Invariant surfaces for toric type foliations in dimension three

Author

Cano Torres, Felipe

Molina-Samper, Beatriz

Publication date

2021

Abstract

A foliation is of toric type when it has a combinatorial reduction of singularities. We show that every toric type foliation on (C3, 0) without saddle-nodes has invariant surface. We extend the argument of Cano-Cerveau for the nondicritical case to the compact dicritical components of the exceptional divisor. These components are projective toric surfaces and the isolated invariant branches of the induced foliation extend to closed irreducible curves. We build the invariant surface as a germ along the singular locus and those closed irreducible invariant curves. The result of OrtizBobadilla-Rosales-Gonzalez-Voronin about the distribution of invariant branches in dimension two is a key argument in our proof.

Document Type

Article

Language

English

Subjects and keywords

Singular foliations; Invariant surfaces; Toric varieties; Combinatorial blowing-ups

Publisher

 

Related items

Ministerio de Economía y Competitividad MTM2016-77642-C2-1-P

Ministerio de Educación, Cultura y Deporte FPU14/02653

;

Publicacions matemàtiques ; Vol. 65 Núm. 1 (2021), p. 291-307

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)