A foliation is of toric type when it has a combinatorial reduction of singularities. We show that every toric type foliation on (C3, 0) without saddle-nodes has invariant surface. We extend the argument of Cano-Cerveau for the nondicritical case to the compact dicritical components of the exceptional divisor. These components are projective toric surfaces and the isolated invariant branches of the induced foliation extend to closed irreducible curves. We build the invariant surface as a germ along the singular locus and those closed irreducible invariant curves. The result of OrtizBobadilla-Rosales-Gonzalez-Voronin about the distribution of invariant branches in dimension two is a key argument in our proof.
English
Singular foliations; Invariant surfaces; Toric varieties; Combinatorial blowing-ups
Ministerio de Economía y Competitividad MTM2016-77642-C2-1-P
Ministerio de Educación, Cultura y Deporte FPU14/02653
;
Publicacions matemàtiques ; Vol. 65 Núm. 1 (2021), p. 291-307
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/