Tackling model selection and validation : an information theoretic criterion

dc.contributor.author
Lamperti, Francesco
dc.date.issued
2014
dc.identifier
https://ddd.uab.cat/record/128510
dc.identifier
urn:oai:ddd.uab.cat:128510
dc.description.abstract
Simulated economies suffer intrinsically from validation and comparison problems. The choice of a suitable indicator quantifying the distance between the model and the data is pivotal to model selection. However, how to validate and discriminate between models are still open problems calling for further investigation, especially in light of the increasing use of simulations in social sciences. In this paper I present a new information theoretic criterion to measure how close models' synthetic output replicates the properties of observable time series without the need to resort to any likelihood function or to impose stationarity requirements. This indicator is sufficiently general to be applied to any kind of model able to simulate or predict time series data, from simple univariate models such as Auto Regressive Moving Average (ARMA) and Markov processes to more complex objects including agent-based or dynamic stochastic general equilibrium models. More specifically, I use a simple function of the L-divergence computed at different block lengths in order to select the model that is better able to reproduce the distributions of time changes in the data. To evaluate the L-divergence, probabilities are estimated across frequencies including a correction for the systematic bias. Finally, using a known data generating process, I show how this indicator can be used to validate and discriminate between different univariate models providing a precise measure of the distance of each model from the data.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Social Simulation Conference ; 1a : 2014
dc.rights
open access
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.
dc.rights
https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.title
Tackling model selection and validation : an information theoretic criterion
dc.type
Comunicació de congrés


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)