Author

Cimà, Anna

Gasull, Armengol ORCID

Mañosas Capellades, Francesc

Centre de Recerca Matemàtica

Publication date

2006

Abstract

This paper is devoted to prove two unexpected properties of the Abel equation dz/dt = z 3 +B(t)z 2 +C(t)z, where B and C are smooth, 2π-periodic complex valuated functions, t ∈ R and z ∈ C. The first one is that there is no upper bound for its number of isolated 2π-periodic solutions. In contrast, recall that if the functions B and C are real valuated then the number of complex 2π-periodic solutions is at most three. The second property is that there are examples of the above equation with B and C being low degree trigonometric polynomials such that the center variety is formed by infinitely many connected components in the space of coefficients of B and C. This result is also in contrast with the characterization of the center variety for the examples of Abel equations dz/dt = A(t)z 3 + B(t)z 2 studied in the literature, where the center variety is located in a finite number of connected components.

Document Type

Article
Prepublicació

Language

English

Subjects and keywords

Equacions abelianes; Cicles límits; Pertorbació (Matemàtica); Dinàmica combinatòria

Publisher

Centre de Recerca Matemàtica

Related items

Centre de Recerca Matemàtica. Prepublicacions ;

Rights

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.

https://creativecommons.org/licenses/by-nc-nd/2.5/

This item appears in the following Collection(s)