All-pay auction equilibria in contests

Author

Alcalde, José

Dahm, Matthias

Other authors

Universitat Rovira i Virgili. Departament d'Economia

Publication date

2008



Abstract

We analyze (non-deterministic) contests with anonymous contest success functions. There is no restriction on the number of contestants or on their valuations for the prize. We provide intuitive and easily verifiable conditions for the existence of an equilibrium with properties similar to the one of the (deterministic) all-pay auction. Since these conditions are fulfilled for a wide array of situations, the predictions of this equilibrium are very robust to the specific details of the contest. An application of this result contributes to fill a gap in the analysis of the popular Tullock rent- seeking game because it characterizes properties of an equilibrium for increasing returns to scale larger than two, for any number of contestants and in contests with or without a common value. Keywords: (non-) deterministic contest, all-pay auction, contest success functions. JEL Classification Numbers: C72 (Noncooperative Games), D72 (Economic Models of Political Processes: Rent-Seeking, Elections), D44 (Auctions).

Document Type

Working document

Language

English

CDU Subject

338 - Economic situation. Economic policy. Management of the economy. Economic planning. Production. Services. Prices

Subject

Subhastes; Política; Models economètrics; Renda (Teoria econòmica); Eleccions; Jocs, Teoria de

Pages

40

462582 bytes

Collection

Documents de treball del Departament d'Economia; 2008-04

Documents

DT.2008-4-.PDF

451.7Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el departament i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)