Comunicació de congrés presentada a: 17th International Conference of the Catalan Association for Artificial Intelligence, Barcelona, Catalonia, Spain, October 22-24, 2014
Performing subsea intervention tasks is a challenge due to the complexities of the underwater domain. We propose to use a learning by demonstraition algorithm to intuitively teach an intervention autonomous underwater vehicle (IAUV) how to perform a given task. Taking as an input few operator demonstrations, the algorithm generalizes the task into a model and simultaneously controls the vehicle and the manipulator (using 8 degrees of freedom) to reproduce the task. A complete framework has been implemented in order to integrate the LbD algorithm with the different onboard sensors and actuators. A valve turning intervention task is used to validate the full framework through real experiments conducted in a water tank
This research was sponsored by the Spanish government (COMAROB Project, DPI2011-27977-C03-02) and the PANDORA EU FP7-Project under the Grant agreement FP7-ICT-2011-7-288273
English
Robots mòbils -- Sistemes de control; Mobile robots -- Control systems; Intel·ligència artificial; Artificial intelligence; Vehicles submergibles; Submersibles; Aprenentatge automàtic; Machine learning; Robots -- Programació; Robots -- Programming
IOS Press
info:eu-repo/semantics/altIdentifier/doi/10.3233/978-1-61499-452-7-95
info:eu-repo/semantics/altIdentifier/isbn/978-1-61499-451-0
info:eu-repo/grantAgreement/MICINN//DPI2011-27977-C03-02/ES/COMAROB: ROBOTICA COOPERATIVA MARINA PARA EL MAPEO ACUSTICO Y LA INTERVENCION/
info:eu-repo/grantAgreement/EC/FP7/288273/EU/Persistent Autonomy through Learning, Adaptation, Observation and Re-planning/PANDORA
Tots els drets reservats