Hematoma expansion prediction in intracerebral hemorrhage patients by using synthesized CT images in an end-to-end deep learning framework

dc.contributor
Agencia Estatal de Investigación
dc.contributor.author
Yalcin, Cansu
dc.contributor.author
Abramova, Valeriia
dc.contributor.author
Terceño Izaga, Mikel
dc.contributor.author
Oliver i Malagelada, Arnau
dc.contributor.author
Silva Blas, Yolanda
dc.contributor.author
Lladó Bardera, Xavier
dc.date.accessioned
2024-10-29T20:45:14Z
dc.date.available
2024-10-29T20:45:14Z
dc.date.issued
2024-10-01
dc.identifier
http://hdl.handle.net/10256/25367
dc.identifier.uri
http://hdl.handle.net/10256/25367
dc.description.abstract
Spontaneous intracerebral hemorrhage (ICH) is a type of stroke less prevalent than ischemic stroke but associated with high mortality rates. Hematoma expansion (HE) is an increase in the bleeding that affects 30%–38% of hemorrhagic stroke patients. It is observed within 24 h of onset and associated with patient worsening. Clinically it is relevant to detect the patients that will develop HE from their initial computed tomography (CT) scans which could improve patient management and treatment decisions. However, this is a significant challenge due to the predictive nature of the task and its low prevalence, which hinders the availability of large datasets with the required longitudinal information. In this work, we present an end-to-end deep learning framework capable of predicting which cases will exhibit HE using only the initial basal image. We introduce a deep learning framework based on the 2D EfficientNet B0 model to predict the occurrence of HE using initial non-contrasted CT scans and their corresponding lesion annotation as priors. We used an in-house acquired dataset of 122 ICH patients, including 35 HE cases, containing longitudinal CT scans with manual lesion annotations in both basal and follow-up (obtained within 24 h after the basal scan). Experiments were conducted using a 5-fold cross-validation strategy. We addressed the limited data problem by incorporating synthetic images into the training process. To the best of our knowledge, our approach is novel in the field of HE prediction, being the first to use image synthesis to enhance results. We studied different scenarios such as training only with the original scans, using standard image augmentation techniques, and using synthetic image generation. The best performance was achieved by adding five generated versions of each image, along with standard data augmentation, during the training process. This significantly improved (p=0.0003) the performance obtained with our baseline model using directly the original CT scans from an Accuracy of 0.56 to 0.84, F1-Score of 0.53 to 0.82, Sensitivity of 0.51 to 0.77, and Specificity of 0.60 to 0.91, respectively. The proposed approach shows promising results in predicting HE, especially with the inclusion of synthetically generated images. The obtained results highlight the significance of this research direction, which has the potential to improve the clinical management of patients with hemorrhagic stroke. The code is available at: https://github.com/NIC-VICOROB/HE-prediction-SynthCT
dc.description.abstract
Cansu Yalcin té una beca FI de la Generalitat de Catalunya amb número de referència 2023 FI-1 00096. Valeriia Abramova té una beca FPI del Ministeri de Ciència, Innovació i Universidades, Espanya amb número de referència PRE2021-099121. Aquest treball ha comptat amb el suport de DPI2020-114769RB-I00 i PID2023-146187OB-I00 del Ministerio de Ciencia e Innovación, Espanya
dc.description.abstract
Finançament d'accés obert gràcies a l'acord CRUE-CSIC amb Elsevier
dc.format
application/pdf
dc.language
eng
dc.publisher
Elsevier
dc.relation
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compmedimag.2024.102430
dc.relation
info:eu-repo/semantics/altIdentifier/issn/0895-6111
dc.relation
info:eu-repo/semantics/altIdentifier/eissn/1879-0771
dc.relation
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114769RB-I00/ES/MODELOS PARA LA ESCLEROSIS MULTIPLE USANDO DEEP LEARNING EN DATOS RADIOLOGICOS, CLINICOS Y DE LABORATORIO/
dc.relation
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-146187OB-I00/ES/TECNICAS AVANZADAS DE APRENDIZAJE PROFUNDO PARA EL DESARROLLO DE HERRAMIENTAS DE NEUROIMAGEN/
dc.rights
Attribution-NonCommercial 4.0 International
dc.rights
http://creativecommons.org/licenses/by-nc/4.0/
dc.rights
info:eu-repo/semantics/openAccess
dc.source
Computerized Medical Imaging and Graphics, 2024, vol. 117, art. núm. 102430
dc.source
Articles publicats (D-ATC)
dc.subject
Hemorràgia cerebral
dc.subject
Brain -- Hemorrhage
dc.subject
Malalties cerebrovasculars
dc.subject
Cerebrovascular disease
dc.subject
Tomografia
dc.subject
Tomography
dc.subject
Aprenentatge profund
dc.subject
Deep learning
dc.subject
Imatgeria mèdica
dc.subject
Imaging systems in medicine
dc.title
Hematoma expansion prediction in intracerebral hemorrhage patients by using synthesized CT images in an end-to-end deep learning framework
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
peer-reviewed


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)