SegX-Net: A novel image segmentation approach for contrail detection using deep learning

dc.contributor.author
Nobel, S. M.Nuruzzaman
dc.contributor.author
Hossain, Md Ashraful
dc.contributor.author
Kabir, Md Mohsin
dc.contributor.author
Mridha, M. F.
dc.contributor.author
Alfarhood, Sultan
dc.contributor.author
Safran, Mejdl
dc.date.accessioned
2024-10-29T20:45:17Z
dc.date.available
2024-10-29T20:45:17Z
dc.date.issued
2024-03-05
dc.identifier
http://hdl.handle.net/10256/25532
dc.identifier.uri
http://hdl.handle.net/10256/25532
dc.description.abstract
Contrails are line-shaped clouds formed in the exhaust of aircraft engines that significantly contribute to global warming. This paper confidently proposes integrating advanced image segmentation techniques to identify and monitor aircraft contrails to address the challenges associated with climate change. We propose the SegX-Net architecture, a highly efficient and lightweight model that combines the DeepLabV3+, upgraded, and ResNet-101 architectures to achieve superior segmentation accuracy. We evaluated the performance of our model on a comprehensive dataset from Google research and rigorously measured its efficacy with metrics such as IoU, F1 score, Sensitivity and Dice Coefficient. Our results demonstrate that our enhancements have significantly improved the efficacy of the SegX-Net model, with an outstanding IoU score of 98.86% and an impressive F1 score of 99.47%. These results unequivocally demonstrate the potential of image segmentation methods to effectively address and mitigate the impact of air conflict on global warming. Using our proposed SegX-Net architecture, stakeholders in the aviation industry can confidently monitor and mitigate the impact of aircraft shrinkage on the environment, significantly contributing to the global fight against climate change
dc.description.abstract
13
dc.format
application/pdf
dc.language
eng
dc.publisher
Public Library of Science (PLoS)
dc.relation
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0298160
dc.relation
info:eu-repo/semantics/altIdentifier/eissn/1932-6203
dc.rights
Attribution 4.0 International
dc.rights
http://creativecommons.org/licenses/by/4.0/
dc.rights
info:eu-repo/semantics/openAccess
dc.source
PLoS ONE, 2024, vol. 19, núm. 3, p. e0298160
dc.source
Articles publicats (D-ATC)
dc.subject
Imatges -- Segmentació
dc.subject
Imaging segmentation
dc.subject
Escalfament global
dc.subject
Global warming
dc.subject
Canvis climàtics -- Mitigació
dc.subject
Climate change mitigation
dc.title
SegX-Net: A novel image segmentation approach for contrail detection using deep learning
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
peer-reviewed


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)