Autonomous Underwater Vehicle Docking Under Realistic Assumptions Using Deep Reinforcement Learning

Author

Palomeras Rovira, Narcís

Ridao Rodríguez, Pere

Other authors

Agencia Estatal de Investigación

Publication date

2024-11-13



Abstract

This paper addresses the challenge of docking an Autonomous Underwater Vehicle (AUV) under realistic conditions. Traditional model-based controllers are often constrained by the complexity and variability of the ocean environment. To overcome these limitations, we propose a Deep Reinforcement Learning (DRL) approach to manage the homing and docking maneuver. First, we define the proposed docking task in terms of its observations, actions, and reward function, aiming to bridge the gap between theoretical DRL research and docking algorithms tested on real vehicles. Additionally, we introduce a novel observation space that combines raw noisy observations with filtered data obtained using an Extended Kalman Filter (EKF). We demonstrate the effectiveness of this approach through simulations with various DRL algorithms, showing that the proposed observations can produce stable policies in fewer learning steps, outperforming not only traditional control methods but also policies obtained by the same DRL algorithms in noise-free environments


Work on this article has been supported by the PLOME project (Ref. PLEC2021-007525/AEI/10.13039/501100011033), and the COOPERAMOS-Cooperative Persistent RobotS for Autonomous ManipulatiOn Subsea projectv (Ref. PID2020-115332RB-C32)

Document Type

Article
Published version
peer-reviewed

Language

English

Subjects and keywords

Aprenentatge profund; Deep learning; Aprenentatge automàtic; Machine learning; Aprenentatge per reforç; Reinforcement learning; Vehicles submergibles autònoms; Autonomous underwater vehicles; Vehicles submergibles -- Sistemes de control; Submersibles -- Control systems

Publisher

MDPI (Multidisciplinary Digital Publishing Institute)

Related items

info:eu-repo/semantics/altIdentifier/doi/10.3390/drones8110673

info:eu-repo/semantics/altIdentifier/eissn/2504-446X

PLEC2021-007525

PID2020-115332RB-C32

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PLEC2021-007525/ES/PLOME: Plataforma de Larga Duración para la Observación de los Ecosistemas Marinos/

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115332RB-C32/ES/DESPLIEGUE PERMANENTE DE VEHICULOS SUBMARINOS AUTONOMOS BI-MANUALES PARA LA INTERVENCION/

Rights

Attribution 4.0 International

http://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)