Going Smaller: Attention-based models for automated melanoma diagnosis

dc.contributor
European Commission
dc.contributor.author
Nazari, Sana
dc.contributor.author
García Campos, Rafael
dc.date.accessioned
2024-12-12T04:56:49Z
dc.date.available
2024-12-12T04:56:49Z
dc.date.issued
2025-02
dc.identifier
http://hdl.handle.net/10256/25835
dc.identifier
39637458
dc.identifier.uri
http://hdl.handle.net/10256/25835
dc.description.abstract
Computational approaches offer a valuable tool to aid with the early diagnosis of melanoma by increasing both the speed and accuracy of doctors’ decisions. The latest and best-performing approaches often rely on large ensemble models, with the number of trained parameters exceeding 600 million. However, this large parameter count presents considerable challenges in terms of computational demands and practical application. Addressing this gap, our work introduces a suite of attention-based convolutional neural network (CNN) architectures tailored to the nuanced classification of melanoma. These innovative models, founded on the EfficientNet-B3 backbone, are characterized by their significantly reduced size. This study highlights the feasibility of deploying powerful, yet compact, diagnostic models in practical settings, such as smartphone-based dermoscopy, and in doing so revolutionizing point-of-care diagnostics and extending the reach of advanced medical technologies to remote and under-resourced areas. It presents a comparative analysis of these novel models with the top three prize winners of the International Skin Imaging Collaboration (ISIC) 2020 challenge using two independent test sets. The results for our architectures outperformed the second and third-placed winners and achieved comparable results to the first-placed winner. These models demonstrated a delicate balance between efficiency and accuracy, holding their ground against larger models in performance metrics while operating on up to 98% less number of parameters and showcasing their potential for real-time application in resource-limited environments
dc.description.abstract
This work was partially funded through the European Commission’s Horizon 2020 program through the iToBoS project (grant number SC1-BHC-06-2020-965221) and the IFUDG 2022 grant
dc.description.abstract
Open Access funding provided thanks to the CRUE-CSIC agreement with Elsevier
dc.description.abstract
3
dc.format
application/pdf
dc.language
eng
dc.publisher
Elsevier
dc.relation
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2024.109492
dc.relation
info:eu-repo/semantics/altIdentifier/issn/0010-4825
dc.relation
info:eu-repo/semantics/altIdentifier/eissn/1879-0534
dc.relation
info:eu-repo/grantAgreement/EC/H2020/965221/EU/Intelligent Total Body Scanner for Early Detection of Melanoma/iToBoS
dc.rights
Attribution-NonCommercial 4.0 International
dc.rights
http://creativecommons.org/licenses/by-nc/4.0/
dc.rights
info:eu-repo/semantics/openAccess
dc.source
Computers in Biology and Medicine, 2025, vol. 185, art. núm. 109492
dc.source
Articles publicats (D-ATC)
dc.subject
Càncer -- Detecció precoç
dc.subject
Cancer -- Early detection
dc.subject
Visió per ordinador en medicina
dc.subject
Computer vision in medicine
dc.subject
Melanoma -- Diagnòstic
dc.subject
Melanoma -- Diagnosis
dc.subject
Melanoma -- Detecció precoç
dc.subject
Melanoma -- Early detection
dc.title
Going Smaller: Attention-based models for automated melanoma diagnosis
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
peer-reviewed


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)