GNNetSlice: A GNN-based performance model to support network slicing in B5G networks

dc.contributor.author
Farreras Casamort, Miquel
dc.contributor.author
Paillisse Vilanova, Jordi
dc.contributor.author
Fàbrega i Soler, Lluís
dc.contributor.author
Vilà Talleda, Pere
dc.date.accessioned
2025-02-04T00:40:51Z
dc.date.available
2025-02-04T00:40:51Z
dc.date.issued
2025-02-15
dc.identifier
http://hdl.handle.net/10256/26235
dc.identifier.uri
http://hdl.handle.net/10256/26235
dc.description.abstract
Network slicing is gaining traction in Fifth Generation (5G) deployments and Beyond 5G (B5G) designs. In a nutshell, network slicing virtualizes a single physical network into multiple virtual networks or slices, so that each slice provides a desired network performance to the set of traffic flows (source-destination pairs) mapped to it. The network performance, defined by specific Quality of Service (QoS) parameters (latency, jitter and losses), is tailored to different use cases, such as manufacturing, automotive or smart cities. A network controller determines whether a new slice request can be safely granted without degrading the performance of existing slices, and therefore fast and accurate models are needed to efficiently allocate network resources to slices. Although there is a large body of work of network slicing modeling and resource allocation in the Radio Access Network (RAN), there are few works that deal with the implementation and modeling of network slicing in the core and transport network. In this paper, we present GNNetSlice, a model that predicts the performance of a given configuration of network slices and traffic requirements in the core and transport network. The model is built leveraging Graph Neural Networks (GNNs), a kind of Neural Network specifically designed to deal with data structured as graphs. We have chosen a data-driven approach instead of classical modeling techniques, such as Queuing Theory or packet-level simulations due to their balance between prediction speed and accuracy. We detail the structure of GNNetSlice, the dataset used for training, and show how our model can accurately predict the delay, jitter and losses of a wide range of scenarios, achieving a Symmetric Mean Average Percentage Error (SMAPE) of 5.22%, 1.95% and 2.04%, respectively
dc.format
application/pdf
dc.language
eng
dc.publisher
Elsevier
dc.relation
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.comcom.2025.108044
dc.relation
info:eu-repo/semantics/altIdentifier/issn/0140-3664
dc.relation
info:eu-repo/semantics/altIdentifier/eissn/1873-703X
dc.rights
Reconeixement 4.0 Internacional
dc.rights
http://creativecommons.org/licenses/by/4.0
dc.rights
info:eu-repo/semantics/openAccess
dc.source
Computer Communications, 2025, vol. 232, art.núm.108044
dc.source
Articles publicats (D-ATC)
dc.source
Farreras Casamort, Miquel Paillisse Vilanova, Jordi Fàbrega i Soler, Lluís Vilà Talleda, Pere 2025 GNNetSlice: A GNN-based performance model to support network slicing in B5G networks Computer Communications 232 art.núm.108044
dc.subject
Xarxes neuronals (Informàtica)
dc.subject
Neural networks (Computer science)
dc.subject
Commutació de paquets (Transmissió de dades)
dc.subject
Packet switching (Data transmission)
dc.subject
Dades -- Transmissió
dc.subject
Data transmission systems
dc.title
GNNetSlice: A GNN-based performance model to support network slicing in B5G networks
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
peer-reviewed


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)