dc.contributor.author
Giné, Jaume
dc.contributor.author
Llibre, Jaume
dc.contributor.author
Valls, Claudia
dc.date.accessioned
2024-12-05T22:54:44Z
dc.date.available
2024-12-05T22:54:44Z
dc.date.issued
2016-11-04T17:37:51Z
dc.date.issued
2016-11-04T17:37:51Z
dc.date.issued
2016-11-04T17:37:51Z
dc.identifier
https://doi.org/10.1112/blms/bdv005
dc.identifier
http://hdl.handle.net/10459.1/58395
dc.identifier.uri
http://hdl.handle.net/10459.1/58395
dc.description.abstract
For the polynomial differential system x˙ = −y, y˙ =
x+Qn(x; y), where Qn(x; y) is a homogeneous polynomial of degree
n there are the following two conjectures done in 1999. (1) Is it
true that the previous system for n ≥ 2 has a center at the origin if
and only if its vector field is symmetric about one of the coordinate
axes? (2) Is it true that the origin is an isochronous center of the
previous system with the exception of the linear center only if the
system has even degree? We prove both conjectures for all n odd.
dc.description.abstract
The first author is partially supported by a MINECO/FEDER grant number MTM2011-22877 and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204. The second author is partially supported by a MINECO/FEDER grant MTM2008-03437 and MTM2013-40998-P, an AGAUR grant number 2014 SGR568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, FEDER-UNAB-10-4E-378. The third author is supported by Portuguese National Funds through FCT – Fundação para a Ciência e a Tecnologia within the project PTDC/MAT/117106/2010 and by CAMGSD
dc.format
application/pdf
dc.publisher
London Mathematical Society
dc.relation
info:eu-repo/grantAgreement/MICINN//MTM2011-22877/ES/BIFURCACIONES, INTEGRABILIDAD Y PROPIEDADES CUALITATIVAS DE FAMILIAS DE CAMPOS VECTORIALES/
dc.relation
info:eu-repo/grantAgreement/MICINN//MTM2008-03437/ES/ORBITAS PERIODICAS, BIFURCACIONES E INTEGRABILIDAD DE LOS SISTEMAS DINAMICOS/
dc.relation
info:eu-repo/grantAgreement/MINECO//MTM2013-40998-P/ES/ALGUNOS ASPECTOS DE LA DINAMICA GLOBAL DE LOS SISTEMAS DIFERENCIALES: INTEGRABILIDAD, SOLUCIONES PERIODICAS Y BIFURCACIONES/
dc.relation
Versió postprint del document publicat a: https://doi.org/10.1112/blms/bdv005
dc.relation
Bulletin of the London Mathematical Society, 2015, vol. 47, p. 315-324
dc.relation
info:eu-repo/grantAgreement/EC/FP7/318999
dc.relation
info:eu-repo/grantAgreement/EC/FP7/316338
dc.rights
(c) London Mathematical Society, 2015
dc.rights
info:eu-repo/semantics/openAccess
dc.subject
Complex center-focus problem
dc.subject
Lyapunov constants
dc.title
Centers for the Kukles homogeneous systems with odd degree
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/acceptedVersion