For the polynomial differential system x˙ = −y, y˙ = x+Qn(x; y), where Qn(x; y) is a homogeneous polynomial of degree n there are the following two conjectures done in 1999. (1) Is it true that the previous system for n ≥ 2 has a center at the origin if and only if its vector field is symmetric about one of the coordinate axes? (2) Is it true that the origin is an isochronous center of the previous system with the exception of the linear center only if the system has even degree? We prove both conjectures for all n odd.
The first author is partially supported by a MINECO/FEDER grant number MTM2011-22877 and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204. The second author is partially supported by a MINECO/FEDER grant MTM2008-03437 and MTM2013-40998-P, an AGAUR grant number 2014 SGR568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, FEDER-UNAB-10-4E-378. The third author is supported by Portuguese National Funds through FCT – Fundação para a Ciência e a Tecnologia within the project PTDC/MAT/117106/2010 and by CAMGSD
Inglés
Integrability; Complex center-focus problem; Lyapunov constants; Bautin method; Matemàtica; Mathematics
London Mathematical Society
info:eu-repo/grantAgreement/MICINN//MTM2011-22877/ES/BIFURCACIONES, INTEGRABILIDAD Y PROPIEDADES CUALITATIVAS DE FAMILIAS DE CAMPOS VECTORIALES/
info:eu-repo/grantAgreement/MICINN//MTM2008-03437/ES/ORBITAS PERIODICAS, BIFURCACIONES E INTEGRABILIDAD DE LOS SISTEMAS DINAMICOS/
info:eu-repo/grantAgreement/MINECO//MTM2013-40998-P/ES/ALGUNOS ASPECTOS DE LA DINAMICA GLOBAL DE LOS SISTEMAS DIFERENCIALES: INTEGRABILIDAD, SOLUCIONES PERIODICAS Y BIFURCACIONES/
Versió postprint del document publicat a: https://doi.org/10.1112/blms/bdv005
Bulletin of the London Mathematical Society, 2015, vol. 47, p. 315-324
info:eu-repo/grantAgreement/EC/FP7/318999
info:eu-repo/grantAgreement/EC/FP7/316338
(c) London Mathematical Society, 2015
Documents de recerca [17848]