We characterize the local analytic integrability of weak saddles for complex Lienard systems, x˙ = y−F(x), y˙ = ax, 0 = a ∈ C, with F analytic at 0 and F(0) = F (0) = 0. We prove that they are locally integrable at the origin if and only if F(x) is an even function. This result implies the well-known characterization of the centers for real Lienard systems. Our proof is based on finding the obstructions for the existence of a formal integral at the complex saddle, by computing the so-called resonant saddle quantities
The Armengol Gasull was supported by a MINECO Grant Number MTM2013-40998-P and by a CIRIT Grant Number 2014SGR568. The Jaume Gin´e was partially supported by a MINECO/ FEDER Grant Number MTM2014-53703-P and an AGAUR (Generalitat de Catalunya) Grant Number 2014SGR 1204.
Anglès
Center problem; Analytic integrability; Weak saddle; Líenard equation
Springer International Publishing
MINECO/PN2013-2016/MTM2013-40998-P
MINECO/PN2013-2016/MTM2014-53703-P
Reproducció del document publicat a https://doi.org/10.1007/s00033-016-0756-6
Zeitschrift für angewandte Mathematik und Physik, 2017, vol. 68, núm. 13, p 1-13
(c) Springer International Publishing. 2016
Documents de recerca [17848]