We classify the centers of polynomial differential systems in $R^2$ of odd degree $d \ge 5$, in complex notation, as $\dot{z} = iz + (z \bar z)^(d-5)/2(A z^5 + B z^4 \bar z + C z^3 \bar z^2 + D z^2 \bar z^3 + E z \bar z^4 + F \bar z^5)$, where $A,B,C,D,E, F \in mathbb{C}$ and either $A = Re(D) = 0$, $A = Im(D) = 0$, $Re(A) = D = 0$ or $Im(A) = D = 0$.
We thank to Professor Colin Christopher for his help in the proof of statement (g) of Theorem 3. The first author is partially supported by a MINECO/ FEDER grant number MTM2014-53703-P and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204. The second author is partially supported by a MINECO/ FEDER grant number MTM2008-03437, an AGAUR grant number 2009SGR 410, ICREA Academia, two FP7-PEOPLE-2012-IRSES numbers 316338 and 318999, and FEDERUNAB10-4E-378. The third author is partially supported by FCT/Portugal through the project UID/MAT/04459/2013.
Anglès
Nilpotent center; Degenerate center; Lyapunov constants; Bautin method; Matemàtica; Mathematics
Rocky Mountain Mathematics Consortium
info:eu-repo/grantAgreement/MINECO//MTM2014-53703-P/ES/METODOS CUALITATIVOS EN SISTEMAS DIFERENCIALES CONTINUOS/
info:eu-repo/grantAgreement/MICINN//MTM2008-03437/ES/ORBITAS PERIODICAS, BIFURCACIONES E INTEGRABILIDAD DE LOS SISTEMAS DINAMICOS/
Versió preprint del document publicat a: https://doi.org/10.1216/RMJ-2017-47-4-1097
Rocky Mountain Journal of Mathematics, 2017, vol. 47, núm. 4, p. 1097-1120
info:eu-repo/grantAgreement/EC/FP7/318999
info:eu-repo/grantAgreement/EC/FP7/316338
(c) Rocky Mountain Mathematics Consortium, 2017
Documents de recerca [17848]