In this paper we study the center problem for certain generalized Kukles systems \[ \dot{x}= y, \qquad \dot{y}= P_0(x)+ P_1(x)y+P_2(x) y^2+ P_3(x) y^3, \] where $P_i(x)$ are polynomials of degree $n$, $P_0(0)=0$ and $P_0'(0) <0$. Computing the focal values and using modular arithmetics and Gr\'{o}bner bases we find the center conditions for such systems when $P_0$ is of degree $2$ and $P_i$ for $i=1,2,3$ are of degree $3$ without constant terms. We also establish a conjecture about the center conditions for such systems.
The author is partially supported by a MINECO/ FEDER grant number MTM2014-53703-P and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204.
Inglés
Center problem; Analytic integrability; Polynomial Generalized Kukles systems
American Institute of Mathematical Sciences
info:eu-repo/grantAgreement/MINECO//MTM2014-53703-P/ES/METODOS CUALITATIVOS EN SISTEMAS DIFERENCIALES CONTINUOS/
Versió postprint del document publicat a https://doi.org/10.3934/cpaa.2017021
Communications On Pure And Applied Analysis, 2017, vol. 16, núm. 2, p. 417-425
(c) American Institute of Mathematical Sciences, 2017
Documents de recerca [17848]