Author

Giné, Jaume

Publication date

2018-03-20T12:27:06Z

2018-03-20T12:27:06Z

2017

2018-03-20T12:27:07Z



Abstract

In this paper we study the center problem for certain generalized Kukles systems \[ \dot{x}= y, \qquad \dot{y}= P_0(x)+ P_1(x)y+P_2(x) y^2+ P_3(x) y^3, \] where $P_i(x)$ are polynomials of degree $n$, $P_0(0)=0$ and $P_0'(0) <0$. Computing the focal values and using modular arithmetics and Gr\'{o}bner bases we find the center conditions for such systems when $P_0$ is of degree $2$ and $P_i$ for $i=1,2,3$ are of degree $3$ without constant terms. We also establish a conjecture about the center conditions for such systems.


The author is partially supported by a MINECO/ FEDER grant number MTM2014-53703-P and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204.

Document Type

Article
Accepted version

Language

English

Subjects and keywords

Center problem; Analytic integrability; Polynomial Generalized Kukles systems

Publisher

American Institute of Mathematical Sciences

Related items

info:eu-repo/grantAgreement/MINECO//MTM2014-53703-P/ES/METODOS CUALITATIVOS EN SISTEMAS DIFERENCIALES CONTINUOS/

Versió postprint del document publicat a https://doi.org/10.3934/cpaa.2017021

Communications On Pure And Applied Analysis, 2017, vol. 16, núm. 2, p. 417-425

Rights

(c) American Institute of Mathematical Sciences, 2017

This item appears in the following Collection(s)