Author

García, I. A. (Isaac A.)

Maza Sabido, Susanna

Shafer, Douglas S.

Publication date

2019-06-26T08:34:27Z

2021-11-09T23:32:23Z

2018-11-09

2019-06-26T08:34:29Z



Abstract

This work provides upper bounds on the cyclicity of the centers on center manifolds in the well-known Lorenz family, and also in the Chen and Lü families. We prove that at most one limit cycle can be made to bifurcate from any center of any element of these families, perturbing within the respective family, with the exception of one specific Lorenz system where the cyclicity increases. We also show that this bound is sharp.


The first and second authors are partially supported by a MINECO grant number MTM2017-84383-P and an AGAUR grantnumber 2017SGR-1276.

Document Type

Article
Accepted version

Language

English

Subjects and keywords

Cyclicity; Limit cycle; Center

Publisher

Elsevier

Related items

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84383-P/ES/ORBITAS PERIODICAS E INTEGRABILIDAD EN SISTEMAS DIFERENCIALES CONTINUOS/

Versió postprint del document publicat a https://doi.org/10.1016/j.na.2019.06.012

Nonlinear Analysis-Theory Methods & Applications, 2019, vol. 188, p. 362-376

Rights

cc-by-nc-nd (c) Elsevier, 2019

http://creativecommons.org/licenses/by-nc-nd/3.0/es

This item appears in the following Collection(s)