dc.contributor.author
García, I. A. (Isaac A.)
dc.contributor.author
Maza Sabido, Susanna
dc.contributor.author
Shafer, Douglas S.
dc.date.accessioned
2024-12-05T22:35:06Z
dc.date.available
2024-12-05T22:35:06Z
dc.date.issued
2019-06-26T08:34:27Z
dc.date.issued
2021-11-09T23:32:23Z
dc.date.issued
2018-11-09
dc.date.issued
2019-06-26T08:34:29Z
dc.identifier
https://doi.org/10.1016/j.na.2019.06.012
dc.identifier
http://hdl.handle.net/10459.1/66494
dc.identifier.uri
http://hdl.handle.net/10459.1/66494
dc.description.abstract
This work provides upper bounds on the cyclicity of the centers on center manifolds in the well-known Lorenz family, and also in the Chen and Lü families. We prove that at most one limit cycle can be made to bifurcate from any center of any element of these families, perturbing within the respective family, with the exception of one specific Lorenz system where the cyclicity increases. We also show that this bound is sharp.
dc.description.abstract
The first and second authors are partially supported by a MINECO grant number MTM2017-84383-P and an AGAUR grantnumber 2017SGR-1276.
dc.format
application/pdf
dc.relation
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84383-P/ES/ORBITAS PERIODICAS E INTEGRABILIDAD EN SISTEMAS DIFERENCIALES CONTINUOS/
dc.relation
Versió postprint del document publicat a https://doi.org/10.1016/j.na.2019.06.012
dc.relation
Nonlinear Analysis-Theory Methods & Applications, 2019, vol. 188, p. 362-376
dc.rights
cc-by-nc-nd (c) Elsevier, 2019
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.title
Center cyclicity of Lorenz, Chen and Lü systems
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/acceptedVersion