Agier, Lydiane
Basagaña Flores, Xavier
Maitre, Lea
Granum, Berit
Bird, Philippa K.
Casas Sanahuja, Maribel
Oftedal, Bente
Wright, John
Andrusaityte, Sandra
de Castro, Montserrat
Cequier Manciñeiras, Enrique
Chatzi, Leda
Donaire Gonzalez, David
Grazuleviciene, Regina
Haug, Line S.
Sakhi, Amrit Kaur
Leventakou, Vasiliki
McEachan, Rosemary
Nieuwenhuijsen, Mark J.
Petraviciene, Inga
Robinson, Oliver
Roumeliotaki, Theano
Sunyer, Jordi
Tamayo-Uria, Ibon
Thomsen, Cathrine
Urquiza, José
Valentín, Antònia
Slama, Rémy
Vrijheid, Martine
Siroux, Valérie
2020-04-24T09:48:54Z
2020-04-24T09:48:54Z
2019-02-06
Background: Several single-exposure studies have documented possible effects of environmental factors on lung function, but none has relied on an exposome approach. We aimed to evaluate the association between a broad range of prenatal and postnatal lifestyle and environmental exposures and lung function in children. Methods: In this analysis, we used data from 1033 mother–child pairs from the European Human Early-Life Exposome (HELIX) cohort (consisting of six existing longitudinal birth cohorts in France, Greece, Lithuania, Norway, Spain, and the UK of children born between 2003 and 2009) for whom a valid spirometry test was recorded for the child. 85 prenatal and 125 postnatal exposures relating to outdoor, indoor, chemical, and lifestyle factors were assessed, and lung function was measured by spirometry in children at age 6–12 years. Two agnostic linear regression methods, a deletion-substitution-addition (DSA) algorithm considering all exposures simultaneously, and an exposome-wide association study (ExWAS) considering exposures independently, were applied to test the association with forced expiratory volume in 1 s percent predicted values (FEV1%). We tested for two-way interaction between exposures and corrected for confounding by co-exposures. Findings: In the 1033 children (median age 8·1 years, IQR 6·5–9·0), mean FEV1% was 98·8% (SD 13·2). In the ExWAS, prenatal perfluorononanoate (p=0·034) and perfluorooctanoate (p=0·030) exposures were associated with lower FEV1%, and inverse distance to nearest road during pregnancy (p=0·030) was associated with higher FEV1%. Nine postnatal exposures were associated with lower FEV1%: copper (p=0·041), ethyl-paraben (p=0·029), five phthalate metabolites (mono-2-ethyl 5-carboxypentyl phthalate [p=0·016], mono-2-ethyl-5-hydroxyhexyl phthalate [p=0·023], mono-2-ethyl-5-oxohexyl phthalate [p=0·0085], mono-4-methyl-7-oxooctyl phthalate [p=0·040], and the sum of di-ethylhexyl phthalate metabolites [p=0·014]), house crowding (p=0·015), and facility density around schools (p=0·027). However, no exposure passed the significance threshold when corrected for multiple testing in ExWAS, and none was selected with the DSA algorithm, including when testing for exposure interactions. Interpretation: Our systematic exposome approach identified several environmental exposures, mainly chemicals, that might be associated with lung function. Reducing exposure to these ubiquitous chemicals could help to prevent the development of chronic respiratory disease.
European Community's Seventh Framework Programme (HELIX project).
Inglés
Elsevier
Reproducció del document publicat a: https://doi.org/10.1016/S2542-5196(19)30010-5
The Lancet Planetary Health, 2019, vol. 3, núm. 2, p. e81-e92
cc-by-nc-nd (c) Agier, Lydiane et al., 2019
https://creativecommons.org/licenses/by-nc-nd/4.0/
Documents de recerca [17848]