Detection of Severe Obstructive Sleep Apnea through voice analysis

dc.contributor.author
Solé-Casals, Jordi
dc.contributor.author
Munteanu, Cristian
dc.contributor.author
Capdevila Martín, Oriol
dc.contributor.author
Barbé Illa, Ferran
dc.contributor.author
Durán-Cantolla, Joaquín
dc.contributor.author
Queipo, Carlos
dc.contributor.author
Amilibia, Jose
dc.date.accessioned
2024-12-05T22:00:11Z
dc.date.available
2024-12-05T22:00:11Z
dc.date.issued
2021-03-18T08:57:39Z
dc.date.issued
2021-03-18T08:57:39Z
dc.date.issued
2014
dc.identifier
https://doi.org/10.1016/j.asoc.2014.06.017
dc.identifier
1568-4946
dc.identifier
http://hdl.handle.net/10459.1/70791
dc.identifier.uri
http://hdl.handle.net/10459.1/70791
dc.description.abstract
This paper deals with the potential and limitations of using voice and speech processing to detect Obstructive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients who present various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set of features for detecting OSA. We apply various feature selection and reduction schemes (statistical ranking, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, Support Vector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects shows that in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able to discriminate quite well between the presence and absence of OSA. However, this is not the case with mild OSA and healthy snoring patients where voice seems to play a secondary role. We found that the best classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.
dc.language
eng
dc.publisher
Elsevier
dc.relation
Versió postprint del document publicat a https://doi.org/10.1016/j.asoc.2014.06.017
dc.relation
Applied Soft Computing, 2014, vol. 23, p. 346-354
dc.rights
cc-by-nc-nd (c) Elsevier, 2014
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Obstructive Sleep Apnea
dc.subject
Voice processing
dc.subject
Genetic Algorithms
dc.subject
Feature reduction
dc.title
Detection of Severe Obstructive Sleep Apnea through voice analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/acceptedVersion


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)