Mechanical and microstructural characterization of new nickel-free low modulus beta-type titanium wires during thermomechanical treatments

dc.contributor.author
Guillem Martí, Jordi
dc.contributor.author
Herranz-Diez, Carolina
dc.contributor.author
Shaffer, J.E.
dc.contributor.author
Gil Mur, Francisco Javier
dc.contributor.author
Manero Planella, José María
dc.date.accessioned
2025-05-20T00:04:16Z
dc.date.available
2025-05-20T00:04:16Z
dc.date.issued
2015-06-11
dc.identifier.citation
Guillem Martí, Jordi; Herranz-Diez, Carolina; Shaffer, J.E. [et al.]. Mechanical and microstructural characterization of new nickel-free low modulus beta-type titanium wires during thermomechanical treatments. Materials Science and Engineering: A, 2015, 636, p. 507-515. Disponible en: <https://www.sciencedirect.com/science/article/abs/pii/S0921509315003020?via%3Dihub>. Fecha de acceso: 11 may. 2020. DOI: 10.1016/j.msea.2015.03.060.
dc.identifier.issn
0921-5093
dc.identifier.uri
http://hdl.handle.net/20.500.12328/1519
dc.description.abstract
NiTi alloy is the only practical shape memory alloy (SMA) in biomedical use because of its excellent mechanical stability and functionality. However, it is estimated that between 4.5% and 28.5% of the population are hypersensitive to nickel metal, with a higher prevalence in females. Therefore, developing nickel-free low modulus beta-type titanium alloys showing shape memory or super elastic behavior would have a great interest in the biomaterials field. Homogeneous 127 mu m diameter Ti25Hf21Nb wires were produced and compared to straight annealed Ti-50.8 at% Ni (Nitinol) and 90% cold-drawn 316L wires. Microstructural changes taking place during the heat treatment of cold-worked Ti25Hf21Nb wires were investigated. Large plastic deformation during wire drawing and subsequent annealing led to nano-crystallization and amorphization which may contribute to the observed superelasticity. Mechanical properties were characterized using cyclic uniaxial tension and rotary beam fatigue test modes. A modulus of elasticity of less than 60 GPa and axial recoverable strain of greater than 3% were observed with stress hysteresis resembling a reversible stress-induced martensitic transformation at higher temperatures. The new Ti25Hf21Nb alloy is an important candidate for developing Ni-free SMAs in the future.
dc.format.extent
33
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation.ispartof
Materials Science and Engineering: A
dc.relation.ispartofseries
636;
dc.rights
© 2015 Elsevier B.V. All rights reserved.
dc.subject
Aliatges
dc.subject
Elasticitat
dc.subject
Materials biomèdics
dc.subject
Titani -- Aliatges
dc.subject
Aleaciones
dc.subject
Elasticidad
dc.subject
Materiales biomédicos
dc.subject
Titanio -- Aleaciones
dc.subject
Alloys
dc.subject
Elasticity
dc.subject
Biomedical materials
dc.subject
Titanium alloys
dc.title
Mechanical and microstructural characterization of new nickel-free low modulus beta-type titanium wires during thermomechanical treatments
dc.type
info:eu-repo/semantics/article
dc.subject.udc
62
dc.description.version
info:eu-repo/semantics/acceptedVersion
dc.embargo.terms
cap
dc.identifier.doi
http://dx.doi.org/10.1016/j.msea.2015.03.060


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)