A parameter-free approach for solving combinatorial optimization problems through biased randomization of efficient heuristics

Author

Ionescu, Dragos

Juan, Ángel A.

Faulin, Javier

Ferrer i Biosca, Albert

Other authors

Centre de Recerca Matemàtica

Publication date

2010-12



Abstract

This paper discusses the use of probabilistic or randomized algorithms for solving combinatorial optimization problems. Our approach employs non-uniform probability distributions to add a biased random behavior to classical heuristics so a large set of alternative good solutions can be quickly obtained in a natural way and without complex conguration processes. This procedure is especially useful in problems where properties such as non-smoothness or non-convexity lead to a highly irregular solution space, for which the traditional optimization methods, both of exact and approximate nature, may fail to reach their full potential. The results obtained are promising enough to suggest that randomizing classical heuristics is a powerful method that can be successfully applied in a variety of cases.

Document Type

Preliminary Edition

Language

English

CDU Subject

519.1 - Combinatorial analysis. Graph theory

Subject

Optimització combinatòria

Pages

21

403500 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 991

Documents

Pr991.pdf

394.0Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)