Computing hypergraph width measures exactly

Author

Moll, Lukas

Tazari, Siamak

Thurley, Marc

Other authors

Centre de Recerca Matemàtica

Publication date

2011



Abstract

Hypergraph width measures are a class of hypergraph invariants important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. A connection between these and tree decompositions is established. This enables us to almost seamlessly adapt the combinatorial and algorithmic results known for tree decompositions of graphs to the case of hypergraphs and obtain fast exact algorithms. As a consequence, we provide algorithms which, given a hypergraph H on n vertices and m hyperedges, compute the generalized hypertree-width of H in time O*(2n) and compute the fractional hypertree-width of H in time O(1.734601n.m).1

Document Type

Preliminary Edition

Language

English

CDU Subject

519.1 - Combinatorial analysis. Graph theory

Subject

Hipergrafs

Pages

13

258955 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 1033

Documents

Pr1033.pdf

252.8Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)