Nonpersistence of resonant caustics in perturbed elliptic billiards

Author

Pinto-de-Carvalho, Sònia

Ramírez Ros, Rafael

Other authors

Centre de Recerca Matemàtica

Publication date

2011



Abstract

Caustics are curves with the property that a billiard trajectory, once tangent to it, stays tangent after every reflection at the boundary of the billiard table. When the billiard table is an ellipse, any nonsingular billiard trajectory has a caustic, which can be either a confocal ellipse or a confocal hyperbola. Resonant caustics —the ones whose tangent trajectories are closed polygons— are destroyed under generic perturbations of the billiard table. We prove that none of the resonant elliptical caustics persists under a large class of explicit perturbations of the original ellipse. This result follows from a standard Melnikov argument and the analysis of the complex singularities of certain elliptic functions.

Document Type

Preliminary Edition

Language

English

CDU Subject

53 - Physics

Subject

Pertorbació (Matemàtica); Òptica geomètrica

Pages

17 p.

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 1041

Documents

Pr1041.pdf

189.6Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

This item appears in the following Collection(s)