Gap probabilities for the cardinal sine

Author

Antezana, Jorge

Buckley, Jeremiah

Marzo Sánchez, Jordi

Olsen, Jan-Fredrik

Other authors

Centre de Recerca Matemàtica

Publication date

2011



Abstract

We study the zero set of random analytic functions generated by a sum of the cardinal sine functions which form an orthogonal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.

Document Type

Preliminary Edition

Language

English

CDU Subject

519.1 - Combinatorial analysis. Graph theory

Subject

Funcions analítiques; Probabilitats

Pages

10 p.

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 1058

Documents

Pr1058.pdf

359.2Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

This item appears in the following Collection(s)