Normal forms, stability and splitting of invariant manifolds II. Finitely differentiable Hamiltonians

Author

Bounemoura, Abed

Other authors

Centre de Recerca Matemàtica

Publication date

2012-12-01



Abstract

This paper is a sequel to ``Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasi-periodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori.

Document Type

Preliminary Edition

Language

English

CDU Subject

517 - Analysis

Subject

Varietats (Matemàtica); Formes (Matemàtica); Estabilitat; Hamilton, Sistemes de

Pages

21 p.

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 1133

Documents

Pr1133.pdf

233.8Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

This item appears in the following Collection(s)