Reduction, Linearization and stability of relative equilibria for mechanical systems on riemannian manifolds

Author

Bullo, Francesco

Lewis, Andrew D.

Other authors

Centre de Recerca Matemàtica

Publication date

2005-02



Abstract

Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry, and linearization along a controlled trajectory "commute." As part of the development, relationships are derived between the Jacobi equation of geodesic variation and concepts from reduction theory, such as the curvature of the mechanical connection and the effective potential. As an application of our techniques, fiber and base stability of relative equilibria are studied. The paper also serves as a tutorial of Riemannian geometric methods applicable in the intersection of mechanics and control theory.

Document Type

Preliminary Edition

Language

English

Subjects and keywords

Riemann, Varietats de

Pages

4540124 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 618

Documents

pr618.pdf

4.329Mb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)