Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis

Author

Liu, Hai-Lie

Gil-Sepulcre, Marcos

Francàs, Laia

Nolis, Pau

Parella, Teodor

Benet-Buchholz, Jordi

Fontrodona, Xavier

García-Antón, Jordi

Romero, Núria

Llobet, Antoni

Escriche, Lluís.

Bofill, Roger

Sala, Xavier

Publication date

2017



Abstract

<p> A new CNNC carbene-phthalazine tetradentate ligand has been synthesised, which in the reaction with [Ru(T)Cl3] (T = trpy, tpm, bpea; trpy = 2,2&prime;;6&prime;,2&prime;&prime;-terpyridine; tpm = tris(pyrazol-1-yl)methane; bpea = N,N-bis(pyridin-2-ylmethyl)ethanamine) in MeOH or iPrOH undergoes a C&ndash;N bond scission due to the nucleophilic attack of a solvent molecule, with the subsequent formation of the mononuclear complexes cis-[Ru(PhthaPz-OR)(trpy)X]n+, [Ru(PhthaPz-OMe)(tpm)X]n+ and trans,fac-[Ru(PhthaPz-OMe)(bpea)X]n+ (X = Cl, n = 1; X = H2O, n = 2; PhthaPz-OR = 1-(4-alkoxyphthalazin-1-yl)-3-methyl-1H-imidazol-3-ium), named 1a+/2a2+ (R = Me), 1b+/2b2+ (R = iPr), 3+/42+ and 5+/62+, respectively. Interestingly, regulation of the stability regions of different Ru oxidation states is obtained by different ligand combinations, going from 62+, where Ru(III) is clearly stable and mono-electronic transfers are favoured, to 2a2+/2b2+, where Ru(III) is almost unstable with regard to its disproportionation. The catalytic performance of the Ru&ndash;OH2 complexes in chemical water oxidation at pH 1.0 points to poor stability (ligand oxidation), with subsequent evolution of CO2 together with O2, especially for 42+ and 62+. In electrochemically driven water oxidation, the highest TOF values are obtained for 2a2+ at pH 1.0. In alkene epoxidation, complexes favouring bi-electronic transfer processes show better performances and selectivities than those favouring mono-electronic transfers, while alkenes containing electron-donor groups show better performances than those bearing electron-withdrawing groups. Finally, when cis-&beta;-methylstyrene is employed as the substrate, no cis/trans isomerization takes place, thus indicating the existence of a stereospecific process.</p>

Document Type

Article

Language

English

Publisher

RSC

Version of

Dalton Trans., 2017, 46, 2829-2843

Grant Agreement Number

CTQ2016-80058-R

Related items

MINECO with FEDER Funds

Proyectos I+D+i - Retos 2016

MC4WS

Documents

185 Manuscript accepted article.pdf

759.3Kb

 

Rights

© The Royal Society of Chemistry 2017

This item appears in the following Collection(s)

Papers [1244]