Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

dc.contributor.author
Stetsovych, Oleksandr
dc.contributor.author
Todorovic, Milica
dc.contributor.author
Shimizu, Tomoko K.
dc.contributor.author
Moreno, Cesar
dc.contributor.author
Ryan, James William
dc.contributor.author
Perez Leon, Carmen
dc.contributor.author
Sagisaka, Keisuke
dc.contributor.author
Palomares, Emilio
dc.contributor.author
Matolin, Vladimır
dc.contributor.author
Fujita, Daisuke
dc.contributor.author
Perez, Ruben
dc.contributor.author
Custance, Oscar
dc.date.accessioned
2018-01-15T16:03:20Z
dc.date.accessioned
2018-02-15T10:28:44Z
dc.date.accessioned
2024-04-23T10:33:35Z
dc.date.available
2018-01-15T16:03:20Z
dc.date.available
2018-02-15T10:28:44Z
dc.date.available
2024-04-23T10:33:35Z
dc.date.issued
2015
dc.identifier.uri
http://hdl.handle.net/2072/305890
dc.description.abstract
<div> Anatase is a pivotal material in devices for energy-harvesting applications and catalysis.</div> <div> Methods for the accurate characterization of this reducible oxide at the atomic scale are</div> <div> critical in the exploration of outstanding properties for technological developments. Here</div> <div> we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM),</div> <div> supported by first-principles calculations, for the simultaneous imaging and unambiguous</div> <div> identification of atomic species at the (101) anatase surface. We demonstrate that dynamic</div> <div> AFM-STM operation allows atomic resolution imaging within the material&rsquo;s band gap. Based</div> <div> on key distinguishing features extracted from calculations and experiments, we identify</div> <div> candidates for the most common surface defects. Our results pave the way for the understanding</div> <div> of surface processes, like adsorption of metal dopants and photoactive molecules,</div> <div> that are fundamental for the catalytic and photovoltaic applications of anatase, and</div> <div> demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap</div> <div> materials.</div>
dc.language.iso
eng
dc.publisher
Macmillan Publishers
dc.relation
ICIQ
dc.relation
ICIQ Fellowship
dc.relation.ispartof
NATURE COMMUNICATIONS
dc.rights
2015 Macmillan Publishers
dc.title
Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy
dc.type
info:eu-repo/semantics/article
dc.relation.projectID
2015
dc.identifier.doi
https://doi.org/10.1038/ncomms8265
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

Atomic.pdf

1.660Mb PDF

This item appears in the following Collection(s)

Papers [1244]