Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs

Autor/a

Wilhelmi Roca, Francesc

Barrachina Muñoz, Sergio

Bellalta Jiménez, Boris

Cano Sandín, Cristina

Jonsson, Anders

Neu, Gergely

Data de publicació

2019-02-11T12:13:54Z

2019-02-11T12:13:54Z

2018-12-17



Resum

Spatial Reuse (SR) has recently gained attention to maximize the performance of IEEE 802.11 Wireless Local Area Networks (WLANs). Decentralized mechanisms are expected to be key in the development of SR solutions for next-generation WLANs, since many deployments are characterized by being uncoordinated by nature. However, the potential of decentralized mechanisms is limited by the significant lack of knowledge with respect to the overall wireless environment. To shed some light on this subject, we show the main considerations and possibilities of applying online learning to address the SR problem in uncoordinated WLANs. In particular, we provide a solution based on Multi-Armed Bandits (MABs) whereby independent WLANs dynamically adjust their frequency channel, transmit power and sensitivity threshold. To that purpose, we provide two different strategies, which refer to selfish and environment-aware learning. While the former stands for pure individual behavior, the second one considers the performance experienced by surrounding networks, thus taking into account the impact of individual actions on the environment. Through these two strategies we delve into practical issues of applying MABs in wireless networks, such as convergence guarantees or adversarial effects. Our simulation results illustrate the potential of the proposed solutions for enabling SR in future WLANs. We show that substantial improvements on network performance can be achieved regarding throughput and fairness.

Tipus de document

Article
Versió presentada

Llengua

Anglès

Matèries i paraules clau

spatial reuse; IEEE 802.11 WLAN; reinforcement learning; multi-armed bandits; decentralized learning; reutilización espacial; IEEE 802.11 WLAN; aprendizaje por refuerzo; bandido multibrazo; aprendizaje descentralizado; reutilització espacial; IEEE 802.11 WLAN; aprenentatge per reforç; problema de la màquina escurabutxaques; aprenentatge descentralitzat; Wireless LANs; Xarxes locals sense fil Wi-Fi; Redes locales inalámbricas Wi-Fi

Publicat per

Journal of Network and Computer Applications

Documents relacionats

Journal of Network and Computer Applications, 2019, 127()

https://www.sciencedirect.com/science/article/pii/S1084804518303655

info:eu-repo/grantAgreement/MDM-2015-0502

info:eu-repo/grantAgreement/2017-SGR-1188

info:eu-repo/grantAgreement/TEC2015-71303-R

info:eu-repo/grantAgreement/#890107

Aquest element apareix en la col·lecció o col·leccions següent(s)

Articles [361]