Autor/a

Caballé Llobet, Santi

Capuano, Nicola

Miguel Moneo, Jorge

Otros/as autores/as

Università degli studi di Salerno

Universitat Oberta de Catalunya (UOC)

Fecha de publicación

2019-04-04T16:56:56Z

2019-04-04T16:56:56Z

2016-07-21



Resumen

Peer grading is an approach increasingly adopted for assessing students in massive on-line courses, especially for complex assignments where automatic assessment is impossible and the ability of tutors to evaluate and provide feedback at scale is limited. Unfortunately, as students may have different expertise, peer grading often does not deliver accurate results compared to human tutors. In this paper, we describe and compare different methods, based on graph mining techniques, aimed at mitigating this issue by combining peer grades on the basis of the detected expertise of the assessor students. The possibility to improve these results through optimized techniques for assessors' assignment is also discussed. Experimental results with both synthetic and real data are presented and show better performance of our methods in comparison to other existing approaches.

Tipo de documento

Artículo
Versión publicada

Lengua

Inglés

Materias y palabras clave

peer grading; assessment; MOOCs; e-learning; graph mining; clasificación por pares; evaluación; MOOCs; e-learning; minería gráfica; classificació per parells; avaluació; MOOCs; aprenentatge virtual; mineria de gràfics; Web-based instruction; Ensenyament virtual; Enseñanza virtual

Publicado por

International Journal of Emerging Technologies in Learning

Documentos relacionados

International Journal of Emerging Technologies in Learning, 2017, 11(7)

http://online-journals.org/index.php/i-jet/article/download/5878/4024

info:eu-repo/grantAgreement/TIN2013-45303-P

Este ítem aparece en la(s) siguiente(s) colección(ones)

Articles [156]