dc.contributor.author
Ruiz, Lidia
dc.contributor.author
J. Durán, Ramon
dc.contributor.author
de Miguel, Ignacio
dc.contributor.author
Sayyad Khodashenas, Pouria
dc.contributor.author
Pedreno-Manresa, Jose-Juan
dc.contributor.author
Merayo, Noemí
dc.contributor.author
Aguado, Juan Carlos
dc.contributor.author
Pavon-Marino, Pablo
dc.contributor.author
Siddiqui, Shuaib
dc.contributor.author
Mata, Javier
dc.contributor.author
Fernández, Patricia
dc.contributor.author
Lorenzo, Rubén M.
dc.contributor.author
Avril, Evaristo J.
dc.date.accessioned
2019-05-08T09:15:43Z
dc.date.accessioned
2024-12-09T15:44:52Z
dc.date.available
2019-05-08T09:15:43Z
dc.date.available
2024-12-09T15:44:52Z
dc.date.created
2018-10-19
dc.date.issued
2018-12-13
dc.identifier.uri
http://hdl.handle.net/2072/355137
dc.description.abstract
5G technologies promise to bring new network and service capacities and are expected to introduce significant architectural and service deployment transformations. The Cloud-Radio Access Networks (C-RAN) architecture, enabled by the combination of Software Defined Networking (SDN), Network Function Virtualization (NFV) and Mobile Edge Computing (MEC) technologies, play a key role in the development of 5G. In this context, this paper addresses the problems of Virtual Network Functions (VNF) provisioning (VNF-placement and service chain allocation) in a 5G network. In order to solve that problem, we propose a genetic algorithm that, considering both computing resources and optical network capacity, minimizes both the service blocking rate and CPU usage. In addition, we present an algorithm extension that adds a learning stage and evaluate the algorithm performance benefits in those scenarios where VNF allocations can be reconfigured. Results reveal and quantify the advantages of reconfiguring the VNF mapping depending on the current demands. Our methods outperform previous proposals in the literature, reducing the service blocking ratio while saving energy by reducing the number of active core CPUs
dc.publisher
Applied Sciences
dc.relation.ispartofseries
8;12
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
5G / 6G & Internet of Things
dc.subject.other
Digital Technologies
dc.subject.other
Artificial Intelligence & Big Data
dc.subject.other
Software Networks
dc.title
A Genetic Algorithm for VNF Provisioning in NFV-enabled Cloud/MEC RAN architectures
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion
dc.relation.projectID
eu-repo/grantAgreement/EC/H2020/761727/EU/METRO High bandwidth, 5G Application-aware optical network, with edge storage, compUte and low Latency/METRO-HAUL
dc.identifier.doi
10.3390/app8122614
dc.rights.accessLevel
info:eu-repo/semantics/openAccess