The chemo-selective coupling of oxetanes and carbon dioxide to afford functional, heterocyclic organic compounds known as six-membered cyclic carbonates remains a challenging topic. Here we describe an effective method for their synthesis relying on the use of Al-catalysis. The catalytic reactions can be carried out with excellent selectivity for the cyclic carbonate product tolerating various (functional) groups present in the 2- and 3-position(s) of the oxetane ring, and the presented methodology is the first general approach towards the formation of six-membered cyclic carbonates (6MCCs) through oxetane/CO2 coupling chemistry. Apart from a series of substituted six-membered cyclic carbonates, also the unprecedented room temperature coupling of oxetanes and CO2 is disclosed giving, depending on the structural features of the substrate, a variety of five- and six-membered heterocyclic products. A mechanistic rationale is presented for their formation and support for the intermediary presence of a carbonic acid derivative is given. The presented functional carbonates may hold great promise as building blocks in organic synthesis and the development of new, biodegradable polymers.
English
54
10754 p.
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
Papers [1244]