Stabilization of Single Metal Atoms on Graphitic Carbon Nitride

dc.contributor.author
Chen, Zupeng
dc.contributor.author
Mitchell, Sharon
dc.contributor.author
Vorobyeva, Evgeniya
dc.contributor.author
Leary, Rowan K.
dc.contributor.author
Hauert, Roland
dc.contributor.author
Furnival, Tom
dc.contributor.author
Ramasse, Quentin M.
dc.contributor.author
Thomas, John M.
dc.contributor.author
Midgley, Paul A.
dc.contributor.author
Dontsova, Dariya
dc.contributor.author
Antonietti, Markus
dc.contributor.author
Pogodin, Sergey
dc.contributor.author
López, Núria
dc.contributor.author
Pérez-Ramírez, Javier
dc.date.accessioned
2019-07-26T09:57:23Z
dc.date.accessioned
2024-04-23T10:48:03Z
dc.date.available
2019-07-26T09:57:23Z
dc.date.available
2024-04-23T10:48:03Z
dc.date.issued
2017-01-13
dc.identifier.uri
http://hdl.handle.net/2072/359764
dc.description.abstract
Graphitic carbon nitride (g-C3N4) exhibits unique properties as a support for single-atom heterogeneous catalysts (SAHCs). Understanding how the synthesis method, carrier properties, and metal identity impact the isolation of metal centers is essential to guide their design. This study compares the effectiveness of direct and postsynthetic routes to prepare SAHCs by incorporating palladium, silver, iridium, platinum, or gold in g-C3N4 of distinct morphology (bulk, mesoporous and exfoliated). The speciation (single atoms, dimers, clusters, or nanoparticles), distribution, and oxidation state of the supported metals are characterized by multiple techniques including extensive use of aberration-corrected electron microscopy. SAHCs are most readily attained via direct approaches applying copolymerizable metal precursors and employing high surface area carriers. In contrast, although post-synthetic routes enable improved control over the metal loading, nanoparticle formation is more prevalent. Comparison of the carrier morphologies also points toward the involvement of defects in stabilizing single atoms. The distinct metal dispersions are rationalized by density functional theory and kinetic Monte Carlo simulations, highlighting the interplay between the adsorption energetics and diffusion kinetics. Evaluation in the continuous three-phase semihydrogenation of 1-hexyne identifies controlling the metal–carrier interaction and exposing the metal sites at the surface layer as key challenges in designing efficient SAHCs.
dc.format.extent
05785 p.
cat
dc.language.iso
eng
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
54
cat
dc.title
Stabilization of Single Metal Atoms on Graphitic Carbon Nitride
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/acceptedVersion
cat
dc.embargo.terms
12 mesos
cat
dc.identifier.doi
https://doi.org/10.1002/adfm.201605785
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

Chen_et_al-2017-Advanced_Functional_Materials.pdf

4.561Mb PDF

This item appears in the following Collection(s)

Papers [1244]