dc.contributor.author
Pérez-Ramírez, Javier
dc.contributor.author
López, Núria
dc.date.accessioned
2020-01-21T16:17:18Z
dc.date.accessioned
2024-04-23T10:19:54Z
dc.date.available
2020-04-25T01:45:06Z
dc.date.available
2024-04-23T10:19:54Z
dc.date.issued
2019-10-28
dc.identifier.uri
http://hdl.handle.net/2072/368602
dc.description.abstract
The search for new catalytic materials has relied on highly time- and human- resource-consuming procedures. The appearance
of theoretical methods that employ density functional theory coupled to kinetic models has allowed the rational understanding
of activity volcano plots and selectivity abrupt profiles that resemble cliffs. However, these methodologies present several
drawbacks as the optimization is confined to a family of materials, typically metals, and not applied to the overall phase and
compositional space, therefore the maximum activity might not be sufficient for practical applications. Volcanos emerge from
the symmetry between the adsorption energies of different intermediates on the catalyst, and thus circumventing these dependencies
is crucial to identify better catalytic materials. Here we present a revision of the advances in the field that indicate that
complexity in the materials is key to identifying alternative paths and thus overcome the drawbacks of scaling relationships.
dc.format.extent
971 p.
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.title
Strategies to break linear scaling relationships
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/acceptedVersion
cat
dc.embargo.terms
6 mesos
cat
dc.identifier.doi
https://doi.org/10.1038/s41929-019-0376-6
dc.rights.accessLevel
info:eu-repo/semantics/openAccess