Description of interpolation spaces for the pair of local Morrey-type spaces and their generalizations

Author

Burenkov, V.I.

Darbayeva, D.K.

Nursultanov, E.D.

Publication date

2014-01-01



Abstract

We consider the real interpolation method and prove that for general local Morrey-type spaces, in the case when they have the same integrability parameter, the interpolation spaces are again general local Morrey-type spaces with appropriately chosen parameters. This result is a particular case of the interpolation theorem for much more general spaces defined with the help of an operator acting from some function space to the cone of non-negative non-decreasing functions on $ (0,\infty)$ . It is also shown how the classical interpolation theorems due to Stein-Weiss, Peetre, Calder\'\''{o}n, Gilbert, Lizorkin, Freitag and some of their new variants can be derived from this theorem.

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

43 p.

Version of

CRM Preprints

Documents

D5-BurenkovNursultanovMaRcAt.pdf

551.9Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)