We consider the real interpolation method and prove that for general local Morrey-type spaces, in the case when they have the same integrability parameter, the interpolation spaces are again general local Morrey-type spaces with appropriately chosen parameters. This result is a particular case of the interpolation theorem for much more general spaces defined with the help of an operator acting from some function space to the cone of non-negative non-decreasing functions on $ (0,\infty)$ . It is also shown how the classical interpolation theorems due to Stein-Weiss, Peetre, Calder\'\''{o}n, Gilbert, Lizorkin, Freitag and some of their new variants can be derived from this theorem.
English
51 - Mathematics
Matemàtiques
43 p.
CRM Preprints
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/