Existence and asymptotics for solutions of a non-local \boldmath $ Q$ -curvature equation in dimension three

Author

Jin, T.

Maalaoui, A.

Martinazzi, L.

Xiong, J.

Publication date

2014-01-01



Abstract

We study conformal metrics on $ \R{3}$ , i.e., metrics of the form $ g_u=e^{2u}|dx|^2$ , which have constant $ Q$ -curvature and finite volume. This is equivalent to studying the non-local equation \begin{equation*} (-\Delta)^\frac32 u = 2 e^{3u}\text{ in }\R{3},\quad V:=\int_{\R{3}}e^{3u}dx<\infty, \end{equation*} where $ V$ is the volume of $ g_u$ . Adapting a technique of A. Chang and W-X. Chen to the non-local framework, we show the existence of a large class of such metrics, particularly for $ V\le 2\pi^2=|\mathbb{S} ^3|$ . Inspired by previous works of C-S. Lin and L. Martinazzi, who treated the analogue cases in even dimensions, we classify such metrics based on their behavior at infinity.

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

22 p.

Documents

E19-Qcurv3dfinal4MaRcAt.pdf

454.4Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)