Just-infinite $ C^*$ -algebras and their invariants

Author

Rørdam, M.

Publication date

2017-01-01



Abstract

Just-infinite C* s, i.e., infinite dimensional C* s, whose proper quotients are finite dimensional, were investigated in \cite{GMR:JI}. One particular example of a just-infinite residually finite dimensional AF-algebras was constructed in \cite{GMR:JI}. In this paper we extend that construction by showing that each infinite dimensional metrizable Choquet simplex is affinely homeomorphic to the trace simplex of a just-infinite residually finite dimensional C*. The trace simplex of any unital residually finite dimensional C*{} is hence realized by a just-infinite one. We determine the trace simplex of the particular residually finite dimensional AF-algebras constructed in \cite{GMR:JI}, and we show that it has precisely one extremal trace of type II$ _1$ . We give a complete description of the Bratteli diagrams corresponding to residually finite dimensional AF-algebras. We show that a modification of any such Bratteli diagram, similar to the modification that makes an arbitrary Bratteli diagram simple, will yield a just-infinite residually finite dimensional AF-algebra.

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

26 p.

Version of

CRM Preprints

Documents

J1-RFD-JI-CRMMaRcAt.pdf

536.2Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)