Pointwise Estimates for $ 3$ -monotone Approximation

Author

Bondarenko, A.

Leviatan, D.

Prymak, A.

Publication date

2011-01-01



Abstract

We prove that for a $ 3$ -monotone function $ F\in C[-1,1]$ , one can achieve the pointwise estimates \[ |F(x)-\Psi(x)|\le c\omega_3(F,\rho_n(x)), \quad x\in[-1,1], \] where $ \rho_n(x):=\frac1{n^2}+\frac{\sqrt{1-x^2}}n$ and $ c$ is an absolute constant, both with $ \Psi$ , a $ 3$ -monotone quadratic spline on the $ n$ th Chebyshev partition, and with $ \Psi$ , a~$ 3$ -monotone polynomial of degree $ \le n$ . The basis for the construction of these splines and polynomials is the construction of $ 3$ -monotone splines, providing appropriate order of pointwise \linebreak approximation, half of which nodes are prescribed and the other half are free, but controlled'\'''\''.

Document Type

Preliminary Edition

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

31 p.

Version of

CRM Preprints

Documents

P10-pointwise_3_monotoneMaRcAt.pdf

319.9Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)