Regularity of the Monge-Amp`ere equation in Besov'\''s spaces

dc.contributor.author
Kolesnikov, A.V.
dc.contributor.author
Tikhonov, S.Y.
dc.date.accessioned
2020-10-29T11:59:39Z
dc.date.accessioned
2024-09-19T13:38:21Z
dc.date.available
2020-10-29T11:59:39Z
dc.date.available
2024-09-19T13:38:21Z
dc.date.issued
2013-01-01
dc.identifier.uri
http://hdl.handle.net/2072/377694
dc.description.abstract
Let \(\mu = e^{-V} dx\) be a probability measure and \(T = \nabla \Phi\) be the optimal transportation mapping pushing forward \(\mu\) onto a log-concave compactly supported measure \(\nu = e^{−W} dx\). In this paper, we introduce a new approach to the regularity problem for the corresponding Monge–Ampère equation \(e^{−V} = \det D^{2} \Phi \cdot e^{−W (\nabla \Phi)}\) in the Besov spaces \(W_{loc}^{\gamma, 1}\). We prove that \(D^{2} \Phi \in W_{loc}^{\gamma, 1}\) provided \(e^{-V}\) belongs to a proper Besov class and \(W\) is convex. In particular, \(D^{2} \Phi \in L_{loc}^{p}\) for some \(p > 1\). Our proof does not rely on the previously known regularity results.
eng
dc.format.extent
15
cat
dc.language.iso
eng
cat
dc.relation.ispartof
CRM Preprints
cat
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
Regularity of the Monge-Amp`ere equation in Besov'\''s spaces
cat
dc.type
info:eu-repo/semantics/preprint
cat
dc.subject.udc
51
cat
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

Pr1148MaRcAt.pdf

421.6Kb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)