Rigidity of immersed submanifolds in a hyperbolic space

dc.contributor.author
THAC DUNG, N.
dc.date.accessioned
2020-10-29T12:02:18Z
dc.date.accessioned
2024-09-19T13:15:30Z
dc.date.available
2020-10-29T12:02:18Z
dc.date.available
2024-09-19T13:15:30Z
dc.date.issued
2013-01-01
dc.identifier.uri
http://hdl.handle.net/2072/377695
dc.description.abstract
Let \(M^{n}\), \(n \geq 5\) be a complete noncompact sub-manifold immersed in \(\mathbb{H}^{n+p}\). We will prove that there exist certain positive constants \(\alpha\), \(C\) such that if \(||H|| \leq \alpha\) and the total scalar curvature \(||A||_{n} < C\) then \(M\) does not admit any nonconstant harmonic function \(u\) with finite energy. Excepting these two conditions, there is no more additional condition on the curvature. Moreover, in the lower dimensional case, namely, \(2 \leq n \leq 5\), we show that there exist two certain positive constants \(0 < \delta \leq 1), and \(\beta\) depending only on \(\delta\) and the first eigenvalue \(\lambda_{1}(M)\) of Laplacian acting on \(M\) such that if \(M\) satisfies a (\(\delta\)-SC) condition and \(\lambda_{1}(M)\) has a lower bound then \(H^{1}(L^{2\beta}(M)) = 0\). Again, we do not need to have any additional condition on the curvature.
eng
dc.format.extent
16
cat
dc.language.iso
eng
cat
dc.relation.ispartof
CRM Preprints
cat
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
Rigidity of immersed submanifolds in a hyperbolic space
cat
dc.type
info:eu-repo/semantics/preprint
cat
dc.subject.udc
51
cat
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

Pr1158MaRcAt.pdf

399.1Kb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)