dc.contributor.author
A., Jesús
dc.contributor.author
L., Álvaro
dc.contributor.author
Nozawa, Hiraku
dc.date.accessioned
2020-11-06T08:50:28Z
dc.date.accessioned
2024-09-19T13:15:31Z
dc.date.available
2020-11-06T08:50:28Z
dc.date.available
2024-09-19T13:15:31Z
dc.date.issued
2012-01-01
dc.identifier.uri
http://hdl.handle.net/2072/377699
dc.description.abstract
Let \(G\) be a simple Lie group of real rank one, and \(S_{\infty}^{q}\) the ideal boundary of the corresponding hyperbolic symmetric space of noncompact type (\(H_{\mathbb{R}}^{n}\), \(H_{\mathbb{C}}^{n}\) , \(H_{\mathbb{H}}^{n}\) or \(H_{\mathbb{O}}^{2}\)). We show the finiteness of the possible values of the secondary characteristic classes of transversely homogeneous foliations on a fixed manifold whose transverse structures are modeled on the \(G\)-action on \(S_{\infty}^{q}\), except the case of transversely conformally flat foliations of even codimension \(q\). For this exceptional case, we construct examples of foliations on a manifold which break the finiteness and show a weaker form of the finiteness result. These are generalizations of a finiteness theorem of secondary characteristic classes of transversely projective foliations on a fixed manifold by Brooks-Goldman and Heitsch to other transverse structures. We also show Bott-Thurston-Heitsch type formulas to compute the secondary characteristic classes of certain foliated bundles, and then obtain a rigidity result on transversely homogeneous foliations on the unit tangent sphere bundles of hyperbolic manifolds.
eng
dc.format.extent
57 p.
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
SECONDARY CHARACTERISTIC CLASSES OF TRANSVERSELY HOMOGENEOUS FOLIATIONS
cat
dc.type
info:eu-repo/semantics/preprint
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess