dc.contributor.author
Drach, K.
dc.date.accessioned
2020-11-06T09:04:07Z
dc.date.accessioned
2024-09-19T13:37:19Z
dc.date.available
2020-11-06T09:04:07Z
dc.date.available
2024-09-19T13:37:19Z
dc.date.issued
2014-01-01
dc.identifier.uri
http://hdl.handle.net/2072/377704
dc.description.abstract
For a convex domain \(D\) bounded by the hypersurface \(\partial D\) in a space of constant curvature we give sharp bounds on the width \(R − r\) of a spherical shell with radii \(R\) and \(r\) that can enclose \(\partial D\), provided that normal curvatures of \(\partial D\) are pinched by two positive constants. Furthermore, in the Euclidean case we also present sharp estimates for the quotient \(R/r\).
eng
dc.format.extent
14 p.
cat
dc.relation.ispartof
CRM Preprints
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
Some sharp estimates for convex hypersurfaces of pinched normal curvatures
cat
dc.type
info:eu-repo/semantics/preprint
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess