Drift-diffusion models for multiple-alternative forced-choice decision making

Author

Roxin, Alex

Publication date

2019-07-01



Abstract

The canonical computational model for the cognitive process underlying two-alternative forced-choice decision making is the so-called drift–diffusion model (DDM). In this model, a decision variable keeps track of the integrated difference in sensory evidence for two competing alternatives. Here I extend the notion of a drift–diffusion process to multiple alternatives. The competition between n alternatives takes place in a linear subspace of 𝑛−1 dimensions; that is, there are 𝑛−1 decision variables, which are coupled through correlated noise sources. I derive the multiple-alternative DDM starting from a system of coupled, linear firing rate equations. I also show that a Bayesian sequential probability ratio test for multiple alternatives is, in fact, equivalent to these same linear DDMs, but with time-varying thresholds. If the original neuronal system is nonlinear, one can once again derive a model describing a lower-dimensional diffusion process. The dynamics of the nonlinear DDM can be recast as the motion of a particle on a potential, the general form of which is given analytically for an arbitrary number of alternatives.

Document Type

Article
Published version

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

23 p.

Version of

The Journal of Mathematical Neuroscience (Springer)

Documents

s13408-019-0073-4.pdf

1.895Mb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)

CRM Articles [656]