Smoothness of functions and Fourier coefficients

Author

Dyachenko, M. I.

Mukanov, A.B.

Tikhonov, S. Yu.

Publication date

2019-01-01



Abstract

We consider functions represented as trigonometric series with general monotone Fourier coefficients. The main result of the paper is the equivalence of the $L_p$ modulus of smoothness, $1< p<\infty$, of such functions to certain sums of their Fourier coefficients. As applications, for such functions we give a description of the norm in the Besov space and sharp direct and inverse theorems in approximation theory.

Document Type

Article
Published version

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

1019 p.

Version of

Sbornik: Mathematics (IOP Science)

Documents

Dyachenko_2019_Sb._Math._210_994.pdf

717.4Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)

CRM Articles [656]