Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks

dc.contributor.author
Pietras, Bastian
dc.contributor.author
Devalle, Federico
dc.contributor.author
Roxin, Alex
dc.contributor.author
Daffertshofer, Andreas
dc.contributor.author
Montbrió, Ernest
dc.date.accessioned
2020-11-27T07:04:26Z
dc.date.accessioned
2024-09-19T14:30:34Z
dc.date.available
2020-11-27T07:04:26Z
dc.date.available
2024-09-19T14:30:34Z
dc.date.issued
2019-10-01
dc.identifier.uri
http://hdl.handle.net/2072/378027
dc.description.abstract
Chemical and electrical synapses shape the dynamics of neuronal networks. Numerous theoretical studies have investigated how each of these types of synapses contributes to the generation of neuronal oscillations, but their combined effect is less understood. This limitation is further magnified by the impossibility of traditional neuronal mean-field models—also known as firing rate models or firing rate equations—to account for electrical synapses. Here, we introduce a firing rate model that exactly describes the mean-field dynamics of heterogeneous populations of quadratic integrate-and-fire (QIF) neurons with both chemical and electrical synapses. The mathematical analysis of the firing rate model reveals a well-established bifurcation scenario for networks with chemical synapses, characterized by a codimension-2 cusp point and persistent states for strong recurrent excitatory coupling. The inclusion of electrical coupling generally implies neuronal synchrony by virtue of a supercritical Hopf bifurcation. This transforms the cusp scenario into a bifurcation scenario characterized by three codimension-2 points (cusp, Takens-Bogdanov, and saddle-node separatrix loop), which greatly reduces the possibility for persistent states. This is generic for heterogeneous QIF networks with both chemical and electrical couplings. Our results agree with several numerical studies on the dynamics of large networks of heterogeneous spiking neurons with electrical and chemical couplings.
eng
dc.format.extent
42412 p.
cat
dc.language.iso
eng
cat
dc.relation.ispartof
Physics Review E (American Physical Society)
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/draft
cat
dc.subject.udc
51
cat
dc.embargo.terms
cap
cat
dc.identifier.doi
10.1103/physreve.100.042412
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

1905.01917.pdf

1.059Mb PDF

This item appears in the following Collection(s)

CRM Articles [656]