dc.contributor.author
Cardona, Robert
dc.contributor.author
Miranda, Eva
dc.date.accessioned
2020-11-27T08:35:25Z
dc.date.accessioned
2024-09-19T14:30:28Z
dc.date.available
2020-11-27T08:35:25Z
dc.date.available
2024-09-19T14:30:28Z
dc.date.issued
2019-04-01
dc.identifier.uri
http://hdl.handle.net/2072/378030
dc.description.abstract
Moser proved in 1965 in his seminal paper [15] that two volume forms on a compact manifold can be conjugated by a diffeomorphism, that is to say they are equivalent, if and only if their associated cohomology classes in the top cohomology group of a manifold coincide. In particular, this yields a classification of compact symplectic surfaces in terms of De Rham cohomology. In this paper we generalize these results for volume forms admitting transversal zeroes. In this case there is also a cohomology capturing the classification: the relative cohomology with respect to the critical hypersurface. We compare this classification scheme with the classification of Poisson structures on surfaces which are symplectic away from a hypersurface where they fulfill a transversality assumption (b-Poisson structures). We do this using the desingularization technique introduced in [10] and extend it to bm-Nambu structures.
eng
dc.format.extent
197 p.
cat
dc.relation.ispartof
Regular and Chaotic Dynamics (Springer)
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
On the Volume Elements of a Manifold with Transverse Zeroes
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/draft
cat
dc.identifier.doi
10.1134/s1560354719020047
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess