Author

Pedersen, Thomas Vils

Publication date

2000

Abstract

We prove that a homogeneous Banach space ß on the unit circle T can be embedded as a closed subspace of a dual space [Xi]*ß contained in the space of bounded Borel measures on T in such a way that the map ß --> [Xi]*ß defines a bijective correspondence between the class of homogeneous Banach spaces on T and the class of prehomogeneous Banach spaces on T. We apply our results to show that the algebra of all continuous functions on T is the only homogeneous Banach algebra on T in which every closed ideal has a bounded approximate identity with a common bound, and that the space of multipliers between two homogeneous Banach spaces is a dual space. Finally, we describe the space [Xi]*ß for some examples of homogeneous Banach spaces ß on T.

Document Type

Article

Language

English

Publisher

 

Related items

Publicacions matemàtiques ; V. 44 N. 1 (2000), p. 135-155

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)