Besov spaces and the boundedness of weighted Bergman projections over symmetric tube domains

Author

Debertol, Daniele

Publication date

2005

Abstract

We extend the analysis of weighted Bergman spaces Ap;q/s on symmetric tube domains, contained in [2], to the case where the weights are positive powers [formula] of the principal minors [Delta]1,...,[Delta]r on the symmetric cone [omega]. We discuss the realization of the boundary distributions of functions in Ap;q/s in terms of Besov-type spaces Bp;q/s adapted to the structure of the cone. We give a necessary and a sufficient condition on the values of p, q and s for which this identification between Ap;q/s and Bp;q/s holds. We also present a continuous version of thesse latter spaces which is new even for the case s1 = ... = s1 considered in [2]. We use these results to discuss multipliers between Besov spaces and the boundedness of the weighted Bergman projection Ps: Lp;q/s --> Ap;q/s. The situation in the rank two case is specifically dealt with.

Document Type

Article

Language

English

Subjects and keywords

Bergman projection; Jordan algebra; Besov multipliers; Boundary values

Publisher

 

Related items

Publicacions matemàtiques ; V. 49 N. 1 (2005), p. 21-72

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)