Front propagation in hyperbolic fractional reaction-diffusion equations

Author

Méndez López, Vicenç

Ortega Cejas, Vicente

Publication date

2005

Abstract

From the continuous-time random walk scheme and assuming a Lévy waiting time distribution typical of subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion dimensionless number and the fractional index satisfy a certain condition, we find fronts exhibiting an unphysical behavior: they travel faster in the subdiffusive than in the diffusive regime.

Document Type

Article

Language

English

Publisher

 

Related items

Physical review. E : Statistical, nonlinear, and soft matter physics ; Vol. 71, Number 5 (May 2005), p. 057105/1-057105/4

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)